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Abstract. Bus stop congestion is a key factor that influences the service coverage 

and operational efficiency of bus transportation systems, directly impacting traf-

fic flow, passenger experience, and environmental sustainability. This study pro-

poses a novel approach to quantitatively evaluate the congestion of bus stops by 

applying process discovery algorithms. Specifically, congestion levels were ana-

lyzed by dividing the data into two distinct periods—commuting and non-com-

muting hours—to capture temporal variations at the bus stop. The experimental 

results demonstrated that metrics capturing the relational characteristics between 

nodes in the process model—particularly Modified Density and Entropy-based 

metrics—were more effective at detecting congestion phenomena than traditional 

structure-oriented metrics such as simplicity, size, the Extended Cardoso Metric, 

and the Extended Cyclomatic Metric. This analytical approach presents a meth-

odology for analyzing congestion levels at bus stops, offering valuable insights 

for optimizing bus transit infrastructure. 

Keywords: bus stop, congestion, process discovery, process model complexity 

1 Introduction 

The level of congestion at bus stops is a critical factor that directly affects the punctu-

ality, efficiency, and user satisfaction of bus transportation services [1,2]. High conges-

tion levels often result in a range of negative outcomes, including delays in boarding 

and alighting, insufficient waiting space within the stop, and diminished service relia-

bility. These challenges may further escalate, contributing to citywide traffic conges-

tion and environmental deterioration. 

Process mining (PM) enables the discovery of actual business process flows by an-

alyzing execution events within real information systems [3]. It also provides method-

ologies for in-depth process analysis across various dimensions, including conformance 

checking to verify the alignment between ongoing processes and their expected coun-

terparts, as well as the analysis of various performance metrics such as remaining time. 

Process discovery in PM offers dynamic information and visualization. Addition-

ally, it enables an intuitive understanding of individual process case trajectories and 

variations within a process. Leveraging these capabilities, PM techniques can be ex-

plored for conceptualizing various social phenomena as processes. For instance, this 
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study conceptualized each bus passing through a specific bus stop as a distinct process. 

By analyzing the operational history of all buses traversing that stop, we measured the 

process complexity associated with that particular bus stop. 

Complexity metrics commonly used for process models include simplicity, size, Ex-

tended Cardoso Metric, and Extended Cyclomatic Metric [16,17]. These traditional 

metrics primarily focus on quantifying fundamental structural attributes of the process, 

such as the number of elements. To complement these, we also employ Modified Den-

sity and Entropy-based metrics, which capture the relational and behavioral complexity 

inherent in the process. Modified Density indicates the degree of interconnectedness 

among nodes within the process model, offering insights into the intensity of interac-

tions between operational components. Entropy-based metrics quantify the degree of 

randomness or uncertainty in process execution, enabling a deeper understanding of 

variability and irregularity in passenger flow and bus stop congestion patterns. 

This study aims to propose a framework for evaluating, comparing, and analyzing 

bus stop congestion through the application of these complexity metrics. By concen-

trating on metrics that capture the relational and behavioral aspects of congestion, we 

provide a framework for objective, event log-driven data. Additionally, by analyzing 

congestion variations between morning commuting hours and non-commuting hours, 

this research aims to support the development of customized operational strategies that 

enhance transit service efficiency and passenger satisfaction. 

The remainder of the paper is structured as follows. Section 2 summarizes related 

work. Section 3 details the experimental procedure used. Section 4 presents and dis-

cusses the results. Finally, Section 5 concludes the paper. 

2 Related Work 

Urban traffic congestion has traditionally been assessed using various quantitative 

measures, such as average travel speed, total travel time, and traffic volume indices [4]. 

However, recent studies on traffic congestion have focused on pattern analysis using 

GPS-based data instead of relying on aggregate statistics. Kohan et al. [5] analyzed 

traffic flow patterns to identify congestion segments, and Zhu et al. [6] modeled vehicle 

movement and traffic jam characteristics using a deep learning-based attention mecha-

nism. He et al. [7] conducted a dynamic analysis of congestion zones, onset times, and 

underlying causes, utilizing taxi GPS data. These studies have overcome the limitations 

of conventional single indicators by employing advanced data and methodologies. 

Buses and bus stops are critical congestion points within a transportation system, 

and consequently, studies are being conducted to measure their congestion levels. Carli 

et al. [8] proposed a method for automatically assessing urban traffic congestion by 

utilizing buses as probes and integrating their positional data with information on sur-

rounding traffic conditions for analysis. Kanamitsu et al. [9] contributed to understand-

ing bus and bus stop congestion by automatically estimating passenger congestion lev-

els within buses using Bluetooth Low Energy (BLE) signals. These studies also utilized 

GPS data. 
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Bus punctuality serves as an indicator for evaluating the quality of bus transportation 

services, and reflects the degree of congruence between actual operating times and the 

published schedule [10]. Liu et al. [11] analyzed the factors influencing bus punctuality 

across different time periods, bus route segments, and climatic conditions. The analysis 

revealed that bus delays and deviations from scheduled arrival times were more fre-

quent during peak hours, in the later segments of the bus route, and under adverse 

weather conditions. Chepuri et al. [12] and Ait-Ali et al. [13] assessed changes in traffic 

patterns over time and identified a relative reduction in congestion during off-peak 

hours. Cats et al. [14] analyzed the influence of driving patterns and traffic condition 

variables on travel time variability. 

Furthermore, in the transportation sector, PM is applied to analyze real-world oper-

ational flows and behavioral patterns based on event logs. Delgado et al. [15] analyzed 

the characteristics of bus routes and passenger movement patterns using publicly avail-

able data collected from the public transportation system in Montevideo, Uruguay. This 

study identified discrepancies between theoretical models and real-world operations 

and proposed that PM is an effective tool for diagnosing the efficiency of transportation 

systems. 

However, previous studies have primarily concentrated on analyzing congestion lev-

els and patterns across entire road networks or at the bus route level, rather than quan-

titatively evaluating congestion at individual bus stops. Furthermore, most studies uti-

lize extensive GPS-derived data. This study analyzes temporal changes extracted from 

event logs, quantifying complexity at each station level through various metrics. 

3 Experimental Procedure 
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Fig. 1. Overall framework of the research 

The analytical framework of this study begins with preprocessing the raw data to pre-

pare event logs suitable for PM. Subsequently, process discovery techniques are em-

ployed to extract and analyze congestion patterns at bus stops utilizing various com-

plexity metrics. Finally, statistical tests are conducted to validate the significance of 

observed congestion differences. The entire workflow is summarized in Fig. 1. 

Event logs are generated from raw data related to bus boarding and alighting, and 

the data are classified by two time periods. Subsequently, a process discovery algorithm 

is applied to the event logs to derive process models for each bus stop. Various conges-

tion metrics are then calculated for the discovered process models, and the results are 

compared and evaluated using statistical methods. 

The specifics of each phase are detailed in Subsections 3.1 to 3.5. 

3.1 Raw Dataset 

This study utilized the publicly available dataset1 for Jeju Island, South Korea, which 

was released through the DACON competition. The dataset comprises bus card-specific 

boarding and alighting events recorded over a period of approximately two months, 

from September 1 to October 31, 2019. The data were provided in CSV file format. 

Each record includes the information presented in Table 1. 

Table 1. Excerpt of Raw Dataset used in the research 

bus_route_

id 

vhc 

_id 

geton_

date 

geton_

time 

geton 

_station 

_code 

geton 

_station 

_name 

 

getoff 

_station 

_name 

23000000 
149793

674 

2019-

09-10 

06:34:4

5 
360 

Nohyeong 5-way 

Intersection 
... 

Hwabuk ele-

mentary 

School 

21420000 
149793

535 

2019-

09-10 

07:19:0

7 
2495 

Donggwang 

Transit Station 4 
... 

Jeongjon Vil-

lage 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

The dataset includes only boarding and alighting events that occurred between 6:00 

AM and 12:00 PM and contains passenger transaction records linked to individual 

transportation cards, making it suitable for analyzing usage patterns by time period and 

bus stop. 

3.2 Event Log Preprocessing  

In this study, data preprocessing and event log transformation were conducted to 

enhance analytical accuracy and facilitate congestion analysis through PM. The dataset 

                                                        
1  https://dacon.io/competitions/official/229255/data 
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was restructured to represent the chronological sequence of bus arrivals, as well as pas-

senger boarding and alighting events, at each bus stop. This transformation enabled us 

to model the order in which buses arrive at stops on each operating day. 

Initially, missing values were detected only in alighting events, and these records 

were excluded from the analysis. The data were then converted into an event log format 

appropriate for PM, with each event consisting of three essential components: Case ID, 

Activity, and Timestamp (see Table 2). 

Table 2. Excerpt of Event Log used in the research 

caseID Activity Timestamp 

2019-09-01_(Old) Union Market_4212 30860000 2019-09-01 10:32:59 

2019-09-01_(Old)Jungmun-dong Community 

Service Center_2058 
25000000 2019-09-01 06:38:02 

⋮ ⋮ ⋮ 

 caseID : Represents each bus stop unit by day of the week. To distinguish stops with 

the same name but different directions, both the stop name and the unique stop ID 

are used together (format: date_bus station name_bus station code). 

 Activity : Indicates the bus route ID that stops at the respective bus stop. 

 Timestamp : Refers to the exact date and time at which a boarding or alighting event 

occurs at the respective bus stop. 

Subsequently, the event log was partitioned into two time periods: morning com-

muting hours (7:00:00 AM–9:59:59 AM) and non-commuting hours (10:00:00 AM–

11:59:59 AM). Based on Chepuri et al. [12], who define peak commuting hours as the 

morning period from 7:00 AM to 10:00 AM, we designed our morning commuting 

hours accordingly. Eighteen bus stops with the highest passenger volumes were se-

lected for analysis from the entire set of stops. The refined event logs were subsequently 

used to assess congestion and complexity across different time intervals and bus stops. 

3.3 Process discovery algorithms 

Process discovery is a technique in PM that automatically derives the actual flow and 

structure of processes based on event logs. By analyzing the sequence and interrela-

tionships of events recorded in information systems, it reconstructs real-world business 

processes in a visual and structured form without relying on predefined models. 

To quantitatively assess the structural characteristics and complexity of process mod-

els, only Petri net–based process discovery algorithms were employed [16]. Petri nets 

provide a precise representation of various behaviors observed in real-world business 

and service processes, including concurrency, branching, looping, and synchronization. 

These characteristics facilitate the quantification of complexity in intricate processes 

and effectively capture diverse patterns within real-world workflows. Moreover, Petri 

nets are a standard modeling language in the field of PM, having been reliably validated 

through decades of research and practical application. 
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Inductive Miner [3]. This algorithm detects various patterns in logs—including se-

quential, parallel, concurrent, and loop structures—by employing a recursive partition-

ing approach. It is robust to noise and ensures that the resulting model is always a sound 

Petri net. A primary advantage of this algorithm is its ability to effectively capture the 

structural characteristics of real-world business processes, particularly those involving 

complex branching structures or repetitive patterns. The main parameters presented for 

tuning are listed in Table 3, with default values indicated in bold. 

Table 3. Hyperparameters, Tuned Values, Descriptions, and Effects of Inductive Miner 

Hyperparameter Tuning value Description Effect 

noise_threshold {0.0, 0.1, 0.2, 0.3} 
Ignores infrequent paths 

as the value increases. 

lower = more complex 

model 

multi_processing {True, False} 
Determines whether to 

use multiple CPU cores. 
True = faster processing 

disable_fallthroughs {True, False} 

Excludes certain excep-

tional paths when ena-

bled. 

True = some paths may 

be excluded from the 

model 

Heuristic Miner [17,19]. This algorithm produces realistic process models by analyz-

ing the direct frequency and causal relationships between events. It prioritizes the in-

clusion of frequently occurring paths and activity connections within the log, enabling 

the generation of concise and interpretable models despite the presence of noisy real-

world data. This approach is useful in situations where event logs are incomplete or 

contain a large number of exceptional paths. The parameters adjusted in this study are 

presented in Table 4, with default values indicated in bold. 

Table 4. Hyperparameters, Tuned Values, Descriptions, and Effects of Heuristic Miner 

Hyperparameter Tuning value Description Effect 

dependency_thresh {0.3, 0.5, 0.7, 0.9} 
Causality thresholds be-

tween activities 

Higher = More signifi-

cant paths included 

and_threshold {0.5, 0.65, 0.8} 
Parallel Relationship 

Recognition Threshold 

Higher = stricter recog-

nition of parallel (AND) 

structures. 

loop_two_threshold {0.3, 0.5, 0.7} 
2-Activity Loop Recog-

nition Threshold 

Higher = stricter detec-

tion of two-activity loop 

structures. 

3.4 Process Model Complexity Metrics 

To quantitatively evaluate congestion within each process model, we calculated com-

plexity metrics. The primary congestion indicators utilized in this study are detailed as 

below, encompassing various structural and behavioral aspects of bus stop congestion. 
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(1) Simplicity2 [20]. It is a metric that quantifies the structural simplicity of a process 

model, where a higher value indicates a simpler model. In this study, the Simplicity 

function provided by the PM4Py library was used. 

(2) Size [17]. It refers to the total number of places(P) included in the process model 

and represents its basic structural complexity. A larger value indicates a more complex 

model. (PN indicates the Petri net) 

 𝑺𝒊𝒛𝒆(𝑷𝑵) = 𝑷 (1) 

(3) Extended Cyclomatic Metric (ECyM) [16]. It measures the number of linearly 

independent paths such as loops, branches, and cycles in the control-flow graph of a 

process model. A higher value reflects greater structural complexity, especially in terms 

of repeated process flows, and is effective for capturing complex behaviors. 

 𝑬𝑪𝒚𝑴(𝑷𝑵) = |𝑬| − |𝑽| + 𝒑 (2) 

(4) Extended Cardoso Metric (ECaM) [16,17].  It evaluates branching complexity by 

considering both the number and structural characteristics of decision points (e.g., 

AND, OR, XOR) in the model. A higher value results from more diverse branching 

structures, enbling the quantification of complex patterns in which multiple routes di-

verge or converge at a single bus stop. 

 𝑬𝑪𝑭𝑪𝒑(𝒑) = |{𝒕⦁| 𝐭 ∈ 𝒑⦁}| (3) 

 𝑬𝑪𝒂𝑴(𝑷𝑵) =  ∑ 𝑬𝑪𝑭𝑪𝒑(𝒑)𝒑∈𝑷  (4) 

(5) Modified Density. It is derived from the original Density metric [18], which repre-

sents the degree of connectivity between nodes in a Petri net, including activities that 

were not observed in the event log. In contrast, Modified Density that we propose cal-

culates the connectivity only among activities that actually appear in the log, thus 

providing a more accurate representation of the real-world process complexity by fo-

cusing on observable behavior. 

 𝑴𝑫(𝑷𝑵) =
𝑬

𝑵 ×(𝑵−𝟏)
 (5) 

(6) Entropy [3]. It is a metric that quantifies the uncertainty and variability in the dis-

tribution of paths or events within a process model. A higher entropy value signifies 

increased diversity and distinctive flow patterns, reflecting the complexity at a given 

bus stop. 

                                                        
2 https://pm4py-source.readthedocs.io/en/stable/pm4py.evaluation.simplicity.html 
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 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 = − ∑ 𝑷𝒊𝒊∈{𝑻,𝑷,𝑨} × 𝐥𝐨𝐠𝟐 𝑷𝒊 (6) 

3.5 Validation 

This study employed the Wilcoxon signed-rank test and the permutation test to evaluate 

the statistical significance of differences in bus stop congestion indicators between 

morning commuting and non-commuting hours. The Wilcoxon signed-rank test is a 

non-parametric method used to determine whether the median difference between 

paired data, measured repeatedly under two conditions (in this study, two time periods 

at the same bus stop), is statistically significant. The permutation test is a non-paramet-

ric method that assesses the significance of observed statistics by repeatedly and ran-

domly rearranging the observed values between two conditions, without assuming any 

specific data distribution. Given that the results of the metrics do not assume normality, 

these two non-parametric tests were employed instead of the paired-samples t-test. 

4 Experimental Results 

In this study, the hyperparameters of two process discovery algorithms were tuned to 

evaluate congestion metrics within bus stops between commuting and non-commuting 

hours. Due to higher passenger volumes and bus frequencies during commuting hours, 

the event log was partitioned into these two periods to reflect differences in congestion 

and complexity. Eighteen major bus stops in Jeju Island, previously selected, were an-

alyzed using six metrics. Statistical significance tests were used to determine whether 

specific complexity metrics could reliably distinguish between the two periods at the 

bus stop level. 

4.1 Statistical Significance Analysis of the Heuristics Miner 

The results of the combinations, with each hyperparameter set to its default value, are 

shown in Fig. 2 and Table 5. Fig. 2 illustrates the values of each metric by bus stop and 

time period, with red indicating commuting hours and blue indicating non-commuting 

hours. For ECaM, a logarithmic scale was applied to represent the overall trend due to 

its wide range of values. 

As demonstrated in Fig. 2, Simplicity and Size metrics showed no consistent patterns 

in their average value changes or relationships across bus stops between the two time 

periods. For instance, a bus stop with a high Simplicity value was not necessarily asso-

ciated with a low Size, and in some stops, the Size was observed to be larger during 

non-commuting hours than during commuting periods. Furthermore, within the same 

stop, Simplicity and Size tended to vary inversely, suggesting a weak correlation be-

tween structural simplicity/complexity and actual congestion levels. In other words, 

these structural metrics do not capture real congestion within bus stops. 

In contrast, the Modified Density metric consistently exhibited higher values during 

commuting hours compared to non- commuting hours across most bus stops. Notably, 
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both the Wilcoxon signed-rank test and permutation test results (default parameter com-

bination: p = 0.000/0.000) confirmed statistically significant differences (see Table 5). 

This indicates that the Modified Density metric is highly sensitive to congestion differ-

ences between time periods regardless of hyperparameter variations and aligns well 

with the subjective perception of congestion in real-world public transportation set-

tings. 

Both ECyM and ECaM showed some statistical significance in the Wilcoxon test 

under both default and minimum parameter settings; however, the permutation test re-

sults were inconsistent, and the differences in average values between time periods 

were not as pronounced as those observed with Modified Density. Similarly, Entropy 

exhibited partial significance only in the Wilcoxon test depending on parameter set-

tings, while the permutation test did not reveal clear differences. 

 

 

Fig. 2. Values for Simplicity, Size, ECyM, ECaM, Modified Density, and Entropy metrics at 

the bus stop: commuting hours vs. non-commuting hours 

Table 5. Statistical test results for Simplicity, Size, ECyM, ECaM, Modified Density, and En-

tropy metrics between two time periods 

S Simplicity Size ECyM ECaM 
Modified 

Density 
Entropy 

Wilcoxon 

signed-rank 

test 

1.000 0.001 * 0.081 0.007 * 0.000 * 0.008 * 
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Permutation 

test 
0.784 0.197 0.695 0.084 0.000 * 0.167 

4.2 Statistical Significance Analysis by Metrics 

The results of statistical significance assessments using the Wilcoxon signed-rank test 

and permutation test for all combinations generated by varying hyperparameters across 

the two process discovery algorithms and each applied metric are shown in Table 6. 

The best metric is the one with bold and underline, and the next best metric is the one 

with only bold. 

Table 6. Summary of statistical test results for different congestion metrics 

Algorithm Evaluation Metric Proportion of significant p-values 

Inductive miner 

wilcoxon signed-
rank test 

Simplicity 0 / 16 

Size 4 / 16 

ECyM 14 / 16 

ECaM 4 / 16 

Modified Density 12 / 16 

Entropy 2 / 16 

permutation 
test 

Simplicity 0 / 16 

Size 4 / 16 

ECyM 10 / 16 

ECaM 2 / 16 

Modified Density 6 / 16 

Entropy 3 / 16 

Heuristics miner 

wilcoxon signed-
rank test 

Simplicity 6 / 36 

Size 19 / 36 

ECyM 13 / 36 

ECaM 15 / 36 

Modified Density 34 / 36 

Entropy 20 / 36 

permutation 
test 

Simplicity 0 / 36 

Size 0 / 36 

ECyM 0 / 36 

ECaM 0 / 36 

Modified Density 17 / 36 

Entropy 0 / 36 

For the Inductive Miner, the Wilcoxon signed-rank test showed that ECyM (14 out 

of 16) and Modified Density (12 out of 16) most frequently exhibited significant dif-

ferences between commuting and non-commuting hours, while Size (4 out of 16), 

ECaM (4 out of 16), and Entropy (2 out of 16) showed significance only in some pa-

rameter combinations. The permutation test also revealed significant differences in 

some cases for ECyM (10 out of 16), Modified Density (6 out of 16), Size (4 out of 16), 

Entropy (3 out of 16), and ECaM (2 out of 16). However, Simplicity showed no signif-

icant differences in either test (0 out of 16). 

For the Heuristics Miner, the Wilcoxon signed-rank test showed that Modified Den-

sity (34 out of 36) consistently exhibited significant differences, followed by Entropy 
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(20 out of 36), Size (19 out of 36), ECaM (15 out of 36), ECyM (13 out of 36), and 

Simplicity (6 out of 36), which showed statistical significance at some bus stops. In 

contrast, the permutation test revealed statistically significant differences only for Mod-

ified Density (17 out of 36), while no significant differences were observed for the other 

metrics across all parameter combinations (0 out of 36). 

Overall, Modified Density demonstrated the greatest consistency and sensitivity in 

detecting congestion changes across time periods. This suggests that the metric can be 

effectively utilized for statistical discrimination and practical assessment of congestion 

variations in real-world public transportation operations. 

5 Conclusion 

This study conducted a quantitative analysis of bus stop congestion based on actual 

boarding and alighting event log data from bus passengers in Jeju Island, South Korea. 

Accordingly, process discovery algorithms were introduced to propose and apply con-

gestion and complexity metrics. While existing research on bus stop congestion has 

primarily analyzed static indicators—such as the number of passengers boarding and 

alighting per stop, vehicle dwell counts, and physical tools—this study aimed to quan-

titatively reflect dynamic behaviors occurring at each stop, such as branching and flows. 

Previous research on traffic, including buses and bus stops, has necessitated loca-

tion-based data, such as GPS data. However, this study demonstrates the feasibility of 

quantitatively analyzing changes in congestion and complexity at the bus stop level 

using public transportation card data. This approach could enhance practical applica-

tions by improving data accessibility and reducing costs. Furthermore, it presents a 

novel approach by indicating that temporal congestion patterns can be captured using 

only simple data. 

A limitation of this study is that its analysis was confined to a specific region and 

eighteen major bus stops, which limits the generalizability of its findings. Therefore, 

future research should aim to broaden the scope by including diverse urban areas, var-

ious transportation routes, and data covering extended time periods.  

Another limitation is that each event in the preprocessed data was treated as repre-

senting a single passenger, without accounting for the number of passengers boarding 

or alighting per transportation card. This simplification limits the current analysis. Fu-

ture work could consider passenger counts as an additional attribute to provide realistic 

analysis of bus stop congestion dynamics. 

This study offers a quantitative framework for evaluating congestion at bus stops, 

aiding in the enhancement of operational efficiency and service quality in public trans-

portation systems. By identifying areas of congestion, transit agencies can allocate re-

sources effectively and respond dynamically to demand in real time. Continuous con-

gestion monitoring also helps ensure adherence to service standards and enhances the 

passenger experience. Overall, these insights contribute to optimized management 

aligned with public transportation objectives. 
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